Clinical Practice Guidelines for Subacromial Impingement Syndrome (SAIS)

Jessica Hart
Summer 2015
SAIS: Objectives

• What is SAIS & how do we diagnose it?
• How does it happen?
 • Glenohumeral/scapulothoracic kinematics
 • Posterior capsule tightness
 • Upper quarter posture
 • Acromial morphology
 • Shoulder girdle musculature
• Conservative vs. surgical intervention
• PT for SAIS
• Appropriate rehabilitation exercises for specific muscles
SAIS

- Most common shoulder disorder
- Multifactorial problem
- Neer proposed that 95% of all RTC tears are caused by impingement
- Symptoms: painful arc, crepitus & weakness
 - Occupational demands
 - Athletic activity
 - No precipitating factor
Subacromial Space

• 1.0-1.5 cm on radiograph
 • A ↓ of 3 mm was seen in pts with SAIS compared to healthy subjects
• Inferior: humeral head
• Superior: acromion, coracoacromial ligament & AC joint
• Tissues in space: supraspinatus tendon, subacromial bursa, long head of biceps tendon & capsule

...Any or all may be affected!
Diagnosing SAIS

PT Examination

• AROM & painful
• Special Tests
 • Neer’s impingement sign
 • Hawkins-Kennedy
 • Painful Arc (60-120°)
 • Jobe’s Test (empty can)
 • External rotation resistance stress test
• Nocturnal p! & are unable to lay on the involved side
• Acutely, they may have discomfort at rest

Differential Diagnoses

• GH instability
• Arthritis of the AC jt
• Adhesive capsulitis
• RED FLAGS
 • Systemic conditions in the neck, C/T-spine, axilla, thorax, & diseased viscera in the chest and upper abdomen can refer pain to the shoulder
How Does SAIS Happen?

Intrinsic impingement
- Partial or full thickness tendon tears
 - Overuse
 - Inflammation of tendon’s/subacromial bursa
 - Degeneration of tendons
- Tension overload
- Trauma to tendons

Extrinsic Impingement
- Mechanical compression by some structure external to the tendon
 - Altered GH or scapular kinematics
 - Weak or dysfunctional RTC & scapular muscles
 - Posterior GH capsule tightness
 - Posture dysfunctions of spinal column & scapula
 - Acromial or coracoacromial arch pathology
 - ST abnormalities around subacromial outlet
Glenohumeral Joint Kinematics

- GH jt allows the greatest motion potential of any jt
- Mobility is afforded at the expense of stability
 - Shoulder complex relies on muscles & ligament structures to provide static & dynamic stabilization
- Muscular coordination is necessary for the smooth passage of ST structures under the coracoacromial arch
Glenohumeral Joint Kinematics

- With scapular plane ABD, the humerus ER’s to allow clearance for the greater tuberosity & the associated tissues
 - Limited ER could cause SAIS
- The greatest subacromial contact force between the RTC & biceps tendon with the subacromial arch is at **mid-range of GH ABD**
 - Painful arc
Scapulothoracic Kinematics

- **Normal w/ GH elevation**
 - Upward rotation \(\sim 50^\circ\)
 - ER \(\sim 24^\circ\)
 - Posterior tilt \(\sim 30^\circ\)

- **Abnormal w/ GH elevation**
 - Upward rotation
 - Anterior tilt
 - Scapular IR or “winging”

- **Scapular kinematics can be altered by:**
 - Weak or dysfunctional scapular/RTC musculature
 - Poor cervical & thoracic spine posture
 - ST tightness
Posterior Capsule Tightness

- Increases superior & anterior humeral head translation
 - Altered accessory motion of the humeral head leads to impingement of subacromial structures against the anterior inferior acromion
- Tested via GH horizontal ADD w/ manual stabilization of the scapula
Upper Quarter Posture

- **Slouched posture:** forward head & shoulders with T-spine flexion
- **Position & mobility of the C/T-spine can influence scapulothoracic & GH kinematics**
 - A relatively small increase in T-spine flexion results in a more elevated and anteriorly tilted scapula at rest
 - During GH elevation there is less upward upward rotation and posterior tilt & a decrease in the amount of available GH elevation
 - **Poor posture = decrease in subacromial space**
Acromial Morphology/Shape: Structural

- A majority of the population has a type II or III acromion
 - Type III has a correlation with SAIS
 - 70% of pts with RTC tears have a type III acromion
- Does NOT account for all change in pts shoulder fx
- A thick coracoacromial ligament can directly decrease the subacromial space
 - Significant relationship between this & the incidence of RTC tears
Shoulder Girdle Musculature

RTC Musculature

- RTC muscles compress & stabilize the humerus
 - Torn or degenerating tissues cause superior humeral head translation
 - Encroachment of the “critical zone” or hypovascular zone of the supraspinatus tendon is a precursor to impingement
- Fatigue of the infraspinatus & teres minor leads to less scapular posterior tilt

Scapular Musculature

- In the initial phase of GH elevation, scapular upward rotation is produced by the upper trapezius & serratus anterior
- In the middle, the lower trapezius increases its contribution until they are all equally active
- Without proper stabilization of the scapula, the scapular position can change the length-tension relationship of the attached muscles, specifically the RTC
Conservative vs. Surgical Intervention

Conservative
- Trial of conservative tx first
 - NSAIDs
 - Relative rest
 - Corticosteroid injections
 - PT
- **Goal**: break the cycle of impingement & prevent further ST trauma
- Duration of conservative tx: 3 → 18 months
- SAIS responds to conservative tx 80% of the time

Surgical
- Subacromial decompression & repair in cases of RTC tears
 - Surgeon removes the structure(s) responsible for impingement
 - Subacromial bursa, undersurface of the anterior acromion, coracoacromial ligament, distal clavicle & AC jt
- Conservative tx has comparable success
PT for SAIS

- **Pt education**
 - Avoidance of aggravating activities
 - Independence with HEP

- **Modalities**
 - Ice, moist heat, ultrasound & estim

- **Exercise**
 - PROM → AAROM → AROM
 - Stretching, ROM, PRE’s

- **Scapular Taping??**
PT for SAIS: Acute Stage

- **Decrease p! & inflammation**
 - Rest, modalities (ultrasound, TENS, cryotherapy, iontophoresis), & NSAIDS

- **Maintain ROM**
 - Prevent jt capsule contracture
 - Static stretching for 30-60 sec (Bandi & Irion)
 - Maitland’s Grade I-II GH jt mobilizations
 - AAROM exercises (supine → sitting)
 - **Exercises**: Pendulums, cane AAROM, pulleys

- **Retard muscle atrophy**
 - Submaximal isometric exercises
 - Estim

- **Patient Education**
 - MOI & activities to avoid
 - Posture correction
 - HEP
PT for SAIS: Subacute Stage

- **Promote tissue healing**
 - Modalities
 - Pre-treatment heat
 - Post-treatment ice

- **Progress exercise program**
 - Pulleys & cane AAROM exercises in scapular plane → increasing elevation & ER
 - Static stretching
 - Maitland’s grade III/IV GH jt mobilizations for increasing ROM
 - Isotonic dumbbell exercises
 - PNF

- **Moseley et al used EMG to identify 4 exercises that consistently fired all 8 of the scapular rotator muscles**
 - Scaption; rowing; push-up +; press-up
PT for SAIS: PRE Stage → Return to Activity

PRE Stage
- Increase proprioceptive awareness
- Static stretching
- Maitland’s grade III/IV GH jt mobilizations for increasing ROM
- Muscular endurance is emphasized
- Incorporate functional exercises specific to the pt → duplicate stresses the pt will experience during return to normal UE activity

Return to Activity
- Overhead arm movements desired
- Static stretching
- Strengthening of RTC & scapular muscles
- Reinforce postural awareness
- Modification of repetitive overhead activities
- Teaching the pt self-care
Addressing the Mechanical Problem Via Strengthening

The following exercises have been selected based on the results of numerous cited studies
Supraspinatus

- Compresses, ABD & generates a small ER torque
 - Strongest at 30-60° elevation
 - Deltoid is strongest at 60-90°

- **Scapular plane exercises specifically strengthen the supraspinatus**

- **Exercises**
 - Scapular punches
 - Rowing
 - Push-ups
 - Prone horizontal ABD @ 100° w/ ER
 - 2 hand overhead medicine ball throws

- **Scapular retraction puts the supraspinatus at a better length for strengthening**

- AVOID empty can
Infraspinatus & Teres Minor

- ER of humerus
 - Infraspinatus more effective at 0° ABD
- **Exercises:**
 - Prone horizontal ABD w/ ER
 - = activity of infraspinatus & teres minor
 - Sidelying ER
 - Most combined EMG signal
 - Avoid ER at 90° ABD w/ pts that have capsulolabral pathology
- **Placing a towel roll under the arm increases posterior cuff activity by 20-25%**
Subscapularis

- IR & anterior stability
- IR @ 0° produces = upper & lower subscapularis activity
- IR @ 90° is better for isolating subscapularis
- Exercises:
 - Push-up +
 - Dynamic hug
 - Diagonal exercise
 - Sidelying shoulder ABD
 - Shoulder extension
 - Military press
 - PNF D2 & scapular pattern
Serratus Anterior

- Stabilizes the medial border & inferior angle of the scapula
- Works with pectoralis minor to protract the scapula & with the UT/LT to upwardly rotate the scapula

Exercises:
- Push-up +
- Dynamic hug
- Scapular punch (120° ABD)
- Wall slides
 - Safe early on
- Scapular punches
- Military press
- GH IR/ER @ 90° ABD
- Shoulder flexion, ABD & scaption w/ ER > 120°
- D1/D2 PNF flexion, & D2 extension

- Serratus anterior activity increases as the gravitational challenge increases
Trapezius

- Lower trapezius assists with scapular posterior tilt & ER

Exercises for UT:
- Shoulder shrugs
- Prone rowing
- Prone horizontal ABD
- Dynamic hug
- Military press
- Scaption
- PNF scapular clock
- 2 handed overhead medicine ball throws

Exercises for MT:
- Shoulder shrugs
- Prone rowing
- Prone horizontal ABD

Exercises for LT:
- Prone rowing
- **Prone horizontal ABD**
- **Prone/standing ER at 90° ABD**
- High scapular rows
- Scaption
- D2 PNF pattern: scapular clock

Poor posture → UT/LT muscle imbalance
- Bilateral ER at 0° = greatest LT/UT ratio
- Sidelying ER & prone horizontal ABD are also beneficial in enhancing the ratio
Rhomboids & Levator Scapulae

Exercises:
- ER @ 0 & 90° ABD
- IR @ 90° ABD
- Shoulder ext
- Prone horizontal ABD @ 90°
- Scapular ABD
- ABD
- Standing/prone rows
- Prone extension
- PNF D@ flex/ext
Summary

• SAIS can be caused by many factors
• Many of these exercises target multiple muscles
 • Emphasize posture & scapular retraction
 • Whole body kinetic chain approach
 • Alter bases of support to recruit whole body muscle patterns
Questions/Comments?
Resources

